	Sol Engineering + the	
	CBCS SCHEME	
USN	Adver, Mangaloge	15ME742
Seventh Semester B.E. Degree Examination, July/August 2021		
Tribology		
Tim	Max. I	Marks: 80
	Note: 1. Answer any FIVE full questions. 2. Use of Machine design data hand book is permitted.	
1	 a. Explain the following: i) Oil bearings ii) Gas bearings 	
	iii) Elastohydrodynamic lubrication.b. With suitable examples discuss the types of lubricants.	(09 Marks) (07 Marks)
_	a. Discuss the good properties of lubricants.b. With help of neat sketch, explain the working of saybolt viscometer.	(08 Marks) (08 Marks)
	 a. Explain the friction theories. b. With suitable sketches, explain the friction measurement methods: i) Inclined plane Rig ii) Pin-on-disc Rig. 	(08 Marks) (08 Marks)
4	 Explain the following: i) Abrasive wear mechanism ii) Adhesive wear mechanism iii) Surface fatigue wear mechanism 	
	iv) The delamination theory of wear.	(16 Marks)
5	With assumptions derive Reynold's differential equation in Two dimensions for gradient in a converging oil film with no end leakage.	or the pressure (16 Marks)
6	a. Derive an expression for load carrying capacity of an idealized full journal bea	-
	 b. A fall journal bearing has the following specification; diameter of journal = 75 bearing = 75mm, journal speed = 900rpm, diametral clearance = viscosity = 13cp and attitude = 0.75. Neglecting the effect of end leakage. Det i) Minimum film thickness 	= 0.0875mm,
	 ii) Load carrying capacity iii) Co-efficient of friction iv) Power loss. 	(08 Marks)
	1 of 2	
	CS -	

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

15ME742

- 7 a. A plane slider with fixed shoe bearing has the following specifications; Bearing length = 90mm, Bearing width = 75mm, Load = 17.5kN, Velocity = 2.5m/s, Inclination = -0.00035 rad and Viscosity = 0.0445 Pa-s. Determine:
 - i) Minimum film thickness
 - ii) Power lossiii) Coefficient of friction.

(08 Marks)

- b. A pivoted slider bearing has square shape and has the following specification, load = 15kN, velocity moving member = 5m/s, viscosity = 0.052 Pa-s and permissible minimum film thickness = 0.01875mm. Assume that the dimensionless variable q = 1. Determine,
 - i) Required dimensions of the pad
 - ii) Coefficient of friction 4

iii) Power loss.

Take into account of the influence of end leakages on performance of bearing. (08 Marks)

- 8 a. Derive the expression for rate of flow of oil through a Hydrostatic bearing. (08 Marks)
 - b. A Hydrostatic step bearing for a turbine rotor has the following specifications. Diameter of shaft = 150mm, diameter of pocket = 100mm, vertical thrust on bearing = 70kN, shaft speed = 1000rpm, viscosity of lubricant under operating condition = 0.025 Pa-S and desirable minimum film thickness = 0.125mm. Determine:
 - i) Rate of oil flow through the bearing
 - ii) Power loss due to viscous friction
 - iii) Co-efficient of friction.

(08 Marks)

- 9 a. List the commonly used bearing materials and describe any of the five commonly with respect to their characteristics and advantages. (08 Marks)
 - b. Explain the following:
 - i) Nickel coating
 - ii) Chromium coating on wear out surfaces.

(08 Marks)

- 10 Explain with neat sketches the following:
 - i) Plasma spraying
 - ii) Chemical vapour deposition (CVD)

(16 Marks)